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Description

The underlying idea is that the time of arrival is when the signal ceases to be essentially flat. Noise
keeps the signal from being flat, but noise is fluctuation of a smaller scale than that of the signal
proper. The method for identifying the time of arrival is to find where the derivative is essentially
zero. The problem with doing this in a straightforward way is that noise in the signal will be magnified
by numerical differentiation. Denoising either the result or the initial signal (or both) does not give
satisfactory results. What does work is to regularize the differentiation process itself. We use total-
variation regularization to find a function that is both regular and consistent with the original data.
Once this is found, the time of arrival can be identified by thresholding.

Mathematical Principles

Total-variation seeks to minimize variation in a reconstructed function. In the case of simply denoising
a function f , this is done by finding the minimizer u of the following quantity:∫

|∇u| + λ

2

∫
(u − f)2.

(We use dimension-independent notation, but the application here is one-dimensional.) The parameter
λ controls the relative importance of the two terms: the first term regularizes u, while the second keeps
the result consistent with the data f . The ideal choice for λ is that which results in a u whose mean-
squared difference from f equals the noise in f ; this produces the most regular u that is consistent
with the data.

We combine this with operator-inversion by simply incorporating the operator into the data-fidelity
term: ∫

|∇u| + λ

2

∫
(Pu − f)2.

This is particularly suitable in the case that P−1 is noise-increasing. In our case, P will be the operator
of antidifferentiation: Pu(x) =

∫ x

0
u. The DDMA team has previously implemented this in the case

where P is the Abel transform.
We compute the minimizer by gradient descent. This amounts to evolving to stationarity the PDE

ut = ∇ · ∇
|∇|

− λ
(
P ∗Pu − P ∗f

)
.

When P is antidifferentiation, the adjoint is P ∗u(x) =
∫ N

x
u, where N is the length of the signal.

Once the regularized derivative u is found, thresholding determines where the signal is essentially
constant. We seek the last such interval of appropriate length, to determine when the signal last leaves
the noise floor.

Usage

Several parameters must be chosen. Some affect results, while others affect running time. This is
an issue particularly due to gradient descent being fundamentally slow. More sophisticated, faster
TV-minimization procedures are known, but could not be implemented in the available time.

Outer algorithm parameters are:
N: the length of initial signal to use. Must exceed the latest expected TOA, but smaller values make

for shorter running time.
n: the length of initial to signal to use for estimating the noise level. Longer makes for a more

robust estimate, but must not exceed the length of the noise floor. At present, the main use of the
noise estimate is for hand-adjusting the regularization parameter.
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window: the length of interval shorter than which any flat portion will be deemed spurious. Smaller
values increase the risk of finding late-time flat portions in the main signal. Larger values increase the
risk that blips prior to the true TOA will be regarded as heralding the main signal.

cutoff: the signal is truncated once it reaches this value for an interval of length window. This
greatly speeds convergence. It must be large enough not to affect the noise floor. Changing this value
affects optimal values of ep J and lam. Truncating in this way increases the risk of over-regularizing
the beginning of the signal to the point of it looking flat. Best results would come from not truncating,
but this would increase the running time to a handful of minutes per signal, which was not feasible in
the timeframe of this work.

thresh: the derivative threshold, below which the signal is considered essentially flat.
Parameters for the inner TV-minimization script are:
ep J: the mean change in the computed derivative J below which the TV-minimization is regarded

as sufficiently close to convergence. A too large value can give incorrect results. The smaller the value,
the longer the running time.

lam: the regularization parameter λ. This is presently hand tuned on a subset of the prepended
data. Algorithms exist for estimating λ automatically.

iter: the number of TV-flow timesteps to do before checking for convergence. Not very important.
dt: the stepsize for the PDE. Decreasing this makes for longer running time. A too-large value

makes the PDE numerically unstable.
eps: the PDE has a singularity where ∇u = 0. Adding eps to the denominator removes this, at

the cost of decreasing accuracy a little.
All the parameters were hand tuned on a subset of the prepended strain gauge data. Data of

different scale or noise characteristics will require parameter adjustments. It is possible to make this
process automatic.

Comparing the results with twelve samples for which an “expert TOA” is available, we have the
following:

expert - tvdertoa.m:
17 9 15 13 -1 13 10 22 1 14 23 15

The computed TOA averages 12.58 samples earlier. The earliness reflects the fact that the algorithm
identifies when the trend in the data will take it out of the noise band, before it actually leaves. The
noise in the data can make this trend difficult to identify by eye, so it can be argued that a hand-
identification of TOA from the original data gives a result slightly late. Regularizing the derivative
allows for the trend to be identified despite the noise.

The files toaresults.txt and toaresults.mat contain the results on the full prepended strain
gauge data. Some very late times occur when the data contains unusual flat portions after the main
signal has arrived. This could be solved by truncating the signal soon after the signal has clearly
arrived. The code attempts to do this using a fixed threshold on the signal values; occasionally this
fails to remove a large segment of signal that includes a flat portion. Further work should be able to
remove this problem. The other substantial issue is the hand tuning of the parameters to be suitable
for a subset of the data. It would be possible to automatically generate these parameters for any given
signal; this would increase accuracy significantly.
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